How do you solve #x^2-5x= -9# using the quadratic formula?

1 Answer
Oct 7, 2016

2 complex roots, #x=(5+-3i)/(2)#

Explanation:

Original Equation

#x^2-5x=-9 => x^2-5x+9=0#

Standard Form of a quadratic equation

#ax^2+bx+c=0#

#a=1#
#b=-5#
#c=9#

Quadratic Formula

#x=(-b+-sqrt(b^2-4ac))/(2a)#

#x=(-(-5)+-sqrt((-5)^2-4(1)(9)))/(2(1))#

#x=(5+-sqrt(25-36))/(2)#

#x=(5+-sqrt(-9))/(2)#

#x=(5+-3i)/(2)#

Click here to see a video tutorial for a similar equation