Prove that secx-cosx=tanxsinxsecxcosx=tanxsinx?

2 Answers

Please see below.

Explanation:

secx-cosxsecxcosx

= 1/cosx-cosx1cosxcosx

= (1-cos^2x)/cosx1cos2xcosx

= sin^2x/cosxsin2xcosx

= sinx/cosx xxsinxsinxcosx×sinx

= tanxsinxtanxsinx

Oct 8, 2016

I believe you have made an error in the question as:

sec(x)-cos(x)-=1/cosx-cosxsec(x)cos(x)1cosxcosx

:.sec(x)-cos(x) -=1/cosx-cosx*cosx/cosx

:.sec(x)-cos(x) -=1/cosx-cos^2x/cosx

:.sec(x)-cos(x) -=(1-cos^2x)/cosx

:.sec(x)-cos(x) -=(sin^2x)/cosx (using sin^2x+cos^2x-=1)

:.sec(x)-cos(x) -=sinx/cosx*sinx

:.sec(x)-cos(x) -=tanx*sinx