How do you differentiate f(x)=(3x32x2+5)331?

1 Answer
Oct 11, 2016

dydx=331(9x24x)(3x32x2+5)330

Explanation:

Using chain rule: dydx=dydududx

In this case, y=(3x32x2+5)331

Let u=3x32x2+5,

then dydu=331u330 and dudx=9x24x

So dydx=331u330(9x24x)

=331(9x24x)(3x32x2+5)330