Question #9cda7

1 Answer
Oct 13, 2016

y = 3x-1y=3x1

Explanation:

We will use the following properties of exponents and of logarithms:

  • a^(-x) = 1/a^xax=1ax
  • (a^x)^y = a^(xy)(ax)y=axy
  • a^x*a^y = a^(x+y)axay=ax+y
  • log_a(a^x) = xloga(ax)=x

With those

3^y/27^x=1/33y27x=13

=> 3^y/(3^3)^x = 3^(-1)3y(33)x=31

=> 3^y/3^(3x) = 3^(-1)3y33x=31

=> 3^y = 3^(3x)*3^(-1)3y=33x31

=> 3^y = 3^(3x-1)3y=33x1

=> log_3(3^y) = log_3(3^(3x-1))log3(3y)=log3(33x1)

:. y = 3x-1