How do you find the derivative of ln(x^3+3x)ln(x3+3x)?

1 Answer
Oct 17, 2016

d/dxln(x^3+3x)=(3x^2+3)/(x^3+3x) ddxln(x3+3x)=3x2+3x3+3x

Explanation:

We us the chain rule: dy/dx=dy/(du)(du)/dx dydx=dydududx

Let y=ln(x^3+3x)y=ln(x3+3x), and
Let u=x^3+3xu=x3+3x

y=ln(x^3+3x) y=ln(x3+3x)
:. y=lnu
:. dy/(du)=1/u

u=x^3+3x
:. (du)/dx=3x^2+3

So using the chain rule we have:
dy/dx=dy/(du)(du)/dx
:. dy/dx=1/u(3x^2+3)
:. dy/dx=(3x^2+3)/(x^3+3x)