How do you simplify \frac { x ^ { 2} - 2x - 15} { x ^ { 2} - 9} \cdot \frac { x + 3} { x - 5}?

2 Answers
Oct 20, 2016

(x+3)/(x-3)

Explanation:

\frac { x ^ { 2} - 2x - 15} { x ^ { 2} - 9} \cdot \frac { x + 3} { x - 5}

Factor the fraction on the left

What are the factors of -15 that add up to -2

(x-5)(x+3)

Difference of perfect squares

(x^2-9)=(x^2-3^2)=(x+3)(x-3)

Rewrite the expression using the factors you just found

((x-5)(x+3))/((x+3)(x-3))*(x+3)/(x-5)

Now cross cancel

(cancel(x-5)cancel(x+3))/(cancel(x+3)(x-3))*(x+3)/cancel(x-5)

You are then left with

(x+3)/(x-3)

Oct 20, 2016

The expression can be simplified to (x + 3)/(x- 3).

Explanation:

=((x - 5)(x + 3))/((x + 3)(x- 3)) xx (x + 3)/(x - 5)

=(x + 3)/(x - 3)

Hopefully this helps!