How do you find an equation of the line tangent to the curve at the given point x^3+y^3=36xyx3+y3=36xy given point (18,18)?

1 Answer
Oct 21, 2016

Use implicit differentiation

3x^2+3y^2(dy)/dx=36(x(1)(dy)/dx+y(1))3x2+3y2dydx=36(x(1)dydx+y(1))

Simplify

3x^2+3y^2(dy)/dx=36(x(dy)/dx+y)3x2+3y2dydx=36(xdydx+y)

Distribute

3x^2+3y^2(dy)/dx=36x(dy)/dx+36y3x2+3y2dydx=36xdydx+36y

Isolate dy/dxdydx

3y^2(dy)/dx-36x(dy)/dx=-3x^2+36y3y2dydx36xdydx=3x2+36y

Factor out dy/dxdydx

(dy)/dx(3y^2-36x)=-3x^2+36ydydx(3y236x)=3x2+36y

Divide to isolate dy/dxdydx

((dy)/dxcancel(3y^2-36x))/cancel((3y^2-36x))=(-3x^2+36y)/(3y^2-36x)

Simplify

(dy)/dx=(-3x^2+36y)/(3y^2-36x)

Factor out a 3

(dy)/dx=(3(-x^2+12y))/(3(y^2-12x))

Simplify

(dy)/dx=(cancel3(-x^2+12y))/(cancel3(y^2-12x))

Simplify

(dy)/dx=(12y-x^2)/(y^2-12x)

Substitute in the point (18,18) to find the slope

(dy)/dx=(12(18)-18^2)/(18^2-12(18))

(dy)/dx=-1

Now we have the slope(m), -1, and a point (18,18)

Use the point slope formula, y=m(x-x_1)+y_1

y=-1(x-18)+18

Simplify

y=-x+18+18

y=-x+36

Click here to see a graph

https://www.desmos.com/calculator/ulvfbcnxtz

Click here to watch a similar example solved

and