How do you find an equation of the line tangent to the curve at the given point x3+y3=36xy given point (18,18)?

1 Answer
Oct 21, 2016

Use implicit differentiation

3x2+3y2dydx=36(x(1)dydx+y(1))

Simplify

3x2+3y2dydx=36(xdydx+y)

Distribute

3x2+3y2dydx=36xdydx+36y

Isolate dydx

3y2dydx36xdydx=3x2+36y

Factor out dydx

dydx(3y236x)=3x2+36y

Divide to isolate dydx

dydx3y236x(3y236x)=3x2+36y3y236x

Simplify

dydx=3x2+36y3y236x

Factor out a 3

dydx=3(x2+12y)3(y212x)

Simplify

dydx=3(x2+12y)3(y212x)

Simplify

dydx=12yx2y212x

Substitute in the point (18,18) to find the slope

dydx=12(18)18218212(18)

dydx=1

Now we have the slope(m), -1, and a point (18,18)

Use the point slope formula, y=m(xx1)+y1

y=1(x18)+18

Simplify

y=x+18+18

y=x+36

Click here to see a graph

https://www.desmos.com/calculator/ulvfbcnxtz

Click here to watch a similar example solved

and