How do you find an equation of the line tangent to the curve at the given point #x^3+y^3=36xy# given point (18,18)?

1 Answer
Oct 21, 2016

Use implicit differentiation

#3x^2+3y^2(dy)/dx=36(x(1)(dy)/dx+y(1))#

Simplify

#3x^2+3y^2(dy)/dx=36(x(dy)/dx+y)#

Distribute

#3x^2+3y^2(dy)/dx=36x(dy)/dx+36y#

Isolate #dy/dx#

#3y^2(dy)/dx-36x(dy)/dx=-3x^2+36y#

Factor out #dy/dx#

#(dy)/dx(3y^2-36x)=-3x^2+36y#

Divide to isolate #dy/dx#

#((dy)/dxcancel(3y^2-36x))/cancel((3y^2-36x))=(-3x^2+36y)/(3y^2-36x)#

Simplify

#(dy)/dx=(-3x^2+36y)/(3y^2-36x)#

Factor out a 3

#(dy)/dx=(3(-x^2+12y))/(3(y^2-12x))#

Simplify

#(dy)/dx=(cancel3(-x^2+12y))/(cancel3(y^2-12x))#

Simplify

#(dy)/dx=(12y-x^2)/(y^2-12x)#

Substitute in the point (18,18) to find the slope

#(dy)/dx=(12(18)-18^2)/(18^2-12(18))#

#(dy)/dx=-1#

Now we have the slope(m), -1, and a point (18,18)

Use the point slope formula, #y=m(x-x_1)+y_1#

#y=-1(x-18)+18#

Simplify

#y=-x+18+18#

#y=-x+36#

Click here to see a graph

https://www.desmos.com/calculator/ulvfbcnxtz

Click here to watch a similar example solved

and