How do you differentiate f(x)=-cos(sqrt(1/(x^2))-x)f(x)=cos(1x2x) using the chain rule?

1 Answer
Oct 21, 2016

f'(x)=sin(1/x-x)*(-1/x^2-1)

Explanation:

Here you take the derivative of the outside, cos, and then the expression within the parenthesis.

u=sqrt(1/x^2)-x=(x^-2)^(1/2)-x=x^(-2/2)-x=x^-1-x=1/x-x

u'=-1x^-2-1=-x^-2-1=-1/x^2-1

g(u)=-cos(u)

g'(u)=-(-sin(u))=sin(u)

Chain rule

g'(u)*u'

Substitute

f'(x)=sin(1/x-x)*(-1/x^2-1)