How do you differentiate h(x)=(3x2x2)(5+4x) using the product rule?

1 Answer
Oct 21, 2016

h'(x)=24x2+4x+15

Explanation:

h'(x)=uv'+u'v

u=3x2x2
u'=34x

v=5+4x
v'=0+4=4

Substitute

h'(x)=(3x2x2)(4)+(34x)(5+4x)

Simplify

h'(x)=(12x8x2)+15+12x20x16x2

Combine like terms

h'(x)=4x24x2+15

h'(x)=24x2+4x+15

Click here for another example