What is the arc length of f(t)=(3t-4,t^3-2t) f(t)=(3t4,t32t) over t in [-1,2]t[1,2]?

1 Answer
Oct 23, 2016

Integration by WolframAlpha
L = 28.7405L=28.7405

Explanation:

dx/dt = 3dxdt=3

dy/dt = 3t^2 - 2dydt=3t22

Let L = the arclength

L = int_a^bsqrt((dx/dt)^2 + (dy/dt)^2)dtL=ba(dxdt)2+(dydt)2dt

Substituting in our values:

L = int_-1^2sqrt((9)^2 + (3t^2 - 2)^2)dtL=21(9)2+(3t22)2dt

Integration by WolframAlpha

L = 28.7405L=28.7405