Is #f(x)=(-x^3+2x^2-3x+7)/(x-2)# increasing or decreasing at #x=-1#?

1 Answer
Oct 24, 2016

So first we have to find the derivative of the function,

#y=f(x)/g(x)#

#y'=(f'(x)g(x)-g'(x)f(x))/g(x)^2#

so with,
#y=(-x^3+2x^2-3x+7)/(x-2)#

#f(x)=-x^3+2x^2-3x+7#

#f'(x)=-3x^2+4x-3#

and,

#g(x)=x-2#

#g'(x) = 1#

so subbing into the formula,

#y'=((-3x^2+4x-3)(x-2)-(-x^3+2x^2-3x+7))/(x-2)^2#

#y'=(-2x^3-8x^2+8x+1)/(x-2)^2#

now to find what the gradient is at #x=-1#
we need to sub in #x=-1# into #y'#

#y'=(-2(-1)^3-8(-1)^2+8(-1)+1)/((-1)-2)^2#

#y'=17/9#

this means that the gradient is positive at #x=-1# and as a result the function in increasing at this value.