Question #b8b69

2 Answers

yes,for x=pi/4,sin^2x+cos^2x=2sinxcosxx=π4,sin2x+cos2x=2sinxcosx

Explanation:

here for x=pi/4,sinx=cosx=(1/sqrt2)x=π4,sinx=cosx=(12)
so ,sinx=cosxsinx=cosx
sinx-cosx=0sinxcosx=0
squaring both sides we get(sinx-cosx)^2=0(sinxcosx)2=0
or ,sin^2x+cos^2x-2sinxcosx=0sin2x+cos2x2sinxcosx=0
orsin^2x+cos^2x=2sinxcosxsin2x+cos2x=2sinxcosx proved.

Nov 5, 2016

While this relation is true for certain values of xx it is not valid in general.
I can not be proven as an identity because it is not, in general, true.

Explanation:

sin^2(x)+cos^2(x)=1sin2(x)+cos2(x)=1 (this is an extension of the Pythagorean Theorem)

For x=0
color(white)("XXX")2sin(x)⋅cos(x)=2×0×1=0XXX2sin(x)cos(x)=2×0×1=0

sin^2(x)+cos^2(x)≠2sin(x)⋅cos(x)sin2(x)+cos2(x)2sin(x)cos(x)