How do you find the derivative of sqrt(5-3x)?

4 Answers
Nov 5, 2016

=(-3)/(2sqrt(5-3x))

Explanation:

To find the derivative of the expression is by applying chain rule
Let v(x)=5-3x and u(x)=sqrtx

Then u@v(x)=u(v(x))=sqrt(5-3x)

Then color(blue)((sqrt(5-3x))'=(u@v(x))'=u'(v(x))xxv'(x)

Computing u'(v(x)) and v'(x)

u'(x)=1/(2sqrtx)
Then

color(blue)( u'(v(x))=1/(2sqrt(5-3x))

color(blue)(v'(x)=-3

color(blue)((sqrt(5-3x))'=(u@v(x))'=u'(v(x))xxv'(x)

(sqrt(5-3x))'=1/(2sqrt(5-3x))xx-3

Therefore,
(sqrt(5-3x))'=(-3)/(2sqrt(5-3x))

Nov 5, 2016

d/dx sqrt(5-3x) = -3/(2sqrt(5-3x)

Explanation:

f(x)= sqrt(5-3x)
We know,
d/dx(sqrtx) = 1/(2sqrtx)
and also,
d/dx(a-bx)=-b

hence, using the chain rule, we differentiate f(x) to get
d/dx sqrt(5-3x) = -3/(2sqrt(5-3x)

Nov 5, 2016

The answer is =-3/(2sqrt(5-3x))

Explanation:

For this, we use (sqrtu)'=1/(2sqrtu) and the chain rule

So, (sqrt(5-3x))'=1/(2sqrt(5-3x))*(-3x)'

=-3/(2sqrt(5-3x))

Nov 5, 2016

-3/(2sqrt(5-3x))

Explanation:

Express y=sqrt(5-3x)=(5-3x)^(1/2)

differentiate using the color(blue)"chain rule"

color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(dy/dx=(dy)/(du)xx(du)/(dx))color(white)(2/2)|)))to(A)

let u=5-3xrArr(du)/(dx)=-3

and y=u^(1/2)rArr(dy)/(du)=1/2u^(-1/2)

substitute these values into (A) changing u back into terms of x.

rArrdy/dx=1/2u^(-1/2)xx(-3)=-3/(2u^(1/2))=-3/(2sqrt(5-3x))