How do you compute the limit of (sinx-cosx)/cos(2x) as x->pi/4?

1 Answer
Nov 19, 2016

Multiply by frac{sin(x) + cos(x)}{sin(x) + cos(x)}.

frac{sin(x) - cos(x)}{cos(2x)} * frac{sin(x) + cos(x)}{sin(x) + cos(x)} = frac{sin^2(x) - cos^2(x)}{cos(2x)(sin(x) + cos(x))}

Use the double angle identity for cosine: cos^2(x) - sin^2(x) -= cos(2x)

frac{sin^2(x) - cos^2(x)}{cos(2x)(sin(x) + cos(x))} = frac{-cos(2x)}{cos(2x)(sin(x) + cos(x))}

Now to evaluate the limit

lim_{x->pi/4}frac{sin(x) - cos(x)}{cos(2x)} = lim_{x->pi/4}-frac{1}{sin(x) + cos(x)}

= -frac{1}{sin(pi/4) + cos(pi/4)}

= -frac{1}{1/sqrt2 + 1/sqrt2}

= sqrt2/2