How do you use the angle sum or difference identity to find the exact value of cos((11pi)/12)#?

2 Answers
Nov 25, 2016

cos((11pi)/12)=-cos(pi/12)

Explanation:

cos((11pi)/12)

= cos(pi-pi/12)

Now using identity cos(A-B)=cosAcosB+sinAsinB, this becomes

cospicos(pi/12)+sinpisin(pi/12)

= -1xxcos(pi/12)+0xxsin(pi/12)

= -cos(pi/12)

Nov 25, 2016

- sqrt(2 + sqrt3)/2

Explanation:

Trig unit circle -->
cos ((11pi)/12) = cos (- pi/12 + pi) = - cos (pi/12) (1)
Evaluate cos (pi/12) by the trig identity:
2cos^2a = 1 + cos 2a
2cos ^2 (pi/12) = 1 + cos (pi/6) = 1 + sqrt3/2 = (2 + sqrt3)/2
cos^2 (pi/12) = (2 + sqrt3)/4
cos (pi/12) = +- sqrt(2 + sqrt3)/2
Since cos (pi/12) is positive, then only the positive value is accepted.
Finally, from (1):
cos ((11pi)/12) = - cos (pi/12) = - sqrt(2 + sqrt3)/2

Check by calculator.
cos ((11pi)/12) = cos 165 = - 0.97
- sqrt(2 + sqrt3)/2 = sqrt(3.73)/2 = 1.93/2 = 0.97. OK