How do you convert r(2 + cos theta) = 1r(2+cosθ)=1 into cartesian form?

2 Answers
Nov 26, 2016

The equation is 3x^2+4y^2+2x-1=03x2+4y2+2x1=0

Explanation:

To transform from polar coordinates (r,theta)(r,θ) into rectangular coordinates (x,y)(x,y), we use the folowing

x=rcosthetax=rcosθ

y=rsinthetay=rsinθ

and x^2+y^2=r^2x2+y2=r2

Therefore,

r(2+costheta)=1r(2+cosθ)=1

2r+rcostheta=12r+rcosθ=1

2sqrt(x^2+y^2)+x=12x2+y2+x=1

2sqrt(x^2+y^2)=1-x2x2+y2=1x

Squaring both sides,

4(x^2+y^2)=(1-x)^2=1-2x+x^24(x2+y2)=(1x)2=12x+x2

3x^2+4y^2+2x-1=03x2+4y2+2x1=0

Nov 26, 2016

It is the ellipsys 3x^2+4y^2+2x-1=03x2+4y2+2x1=0

Explanation:

rho=root2(x^2+y^2)ρ=2x2+y2 and x=rho*sinthetax=ρsinθ and y=rho*costhetay=ρcosθ
root2(x^2+y^2)*(2+x/root2(x^2+y^2))=12x2+y2(2+x2x2+y2)=1
that becomes
2root2(x^2+y^2)+x=122x2+y2+x=1
or
x^2+y^2=((1-x)/2)^2x2+y2=(1x2)2
or
x^2+y^2-(1-x)^2/4=0x2+y2(1x)24=0