If a polynomial function #f(x)# has roots #3+sqrt5# and #-6#, what must be a factor of #f(x)#?

1 Answer
Dec 5, 2016

#(x-3-sqrt5)# and #(x+6)#

Explanation:

The factors is in the form of #(x+z)#

#z+x# must be equal to zero

Where #x# is the zeros (roots)

#x=3+sqrt5# and #-6#

#z+(3+sqrt5)=0#
#z=-3-sqrt5#

#(x-3-sqrt5)# is the first factor

#z+ -6=0#
#z=6#

#(x+6)# is the second factor