How do you find the limit of sin((x-1)/(2+x^2)) sin(x12+x2) as x approaches infinity?

1 Answer
Dec 8, 2016

lim_(x->oo)sin((x-1)/(2+x^2))=0

Explanation:

Because f(x)=sin(x) is continuous, we have

lim_(x->oo)sin((x-1)/(2+x^2)) = sin(lim_(x->oo)(x-1)/(2+x^2))

=sin(lim_(x->oo)(1/x-1/x^2)/(2/x^2+1))

=sin((0-0)/(0+1))

=sin(0)

=0