How do you solve 8^(2x-5)=5^(x+1)82x5=5x+1?

1 Answer
Dec 10, 2016

x = (5ln(8)+ln(5))/(2ln(8)-ln(5))~~4.7095x=5ln(8)+ln(5)2ln(8)ln(5)4.7095

Explanation:

Using the property of logarithms that log(a^x) = xlog(a)log(ax)=xlog(a), we have

8^(2x-5) = 5^(x+1)82x5=5x+1

=> ln(8^(2x-5)) = ln(5^(x+1))ln(82x5)=ln(5x+1)

=> (2x-5)ln(8) = (x+1)ln(5)(2x5)ln(8)=(x+1)ln(5)

=> 2ln(8)x - 5ln(8) = ln(5)x+ln(5)2ln(8)x5ln(8)=ln(5)x+ln(5)

=>2ln(8)x - ln(5)x = 5ln(8)+ln(5)2ln(8)xln(5)x=5ln(8)+ln(5)

=> (2ln(8)-ln(5))x = 5ln(8)+ln(5)(2ln(8)ln(5))x=5ln(8)+ln(5)

:. x = (5ln(8)+ln(5))/(2ln(8)-ln(5))~~4.7095