Question #e1ae5

1 Answer
Dec 10, 2016

π4016sin4(x)cos2(x)dx=π413

Explanation:

First, let's find the indefinite integral 16sin4(x)cos2(x)dx. To do so, we will make use of the formulas

  • sin2(x)=1cos(2x)2
  • sin(2x)=2sin(x)cos(x)

16sin4(x)cos2(x)dx=16sin2(x)(sin(x)cos(x))2dx

=16sin2(x)(12sin(2x))2dx

=4sin2(x)sin2(2x)dx

=41cos(2x)2sin2(2x)dx

=2(sin2(2x)sin2(2x)cos(2x))dx

=2sin2(2x)dx2sin2(2x)cos(2x)dx

Let's evaluate these integrals separately.


2sin2(2x)dx=21cos(4x)2dx

=dxcos(4x)dx

=xsin(4x)4+C


For the second integral, we make the substitution

u=sin(2x)du=2cos(2x)dx

Then

2sin2(2x)cos(2x)dx=u2du

=u33+C

=sin3(2x)3+C


Putting the above together, we get

16sin4(x)cos2(x)dx

=2sin2(2x)dx2sin2(2x)cos(2x)dx

=xsin(4x)4sin3(2x)3+C

We can now evaluate the definite integral.

π4016sin4(x)cos2(x)dx=[xsin(4x)4sin3(2x)3]π40

=(π4sin(π)4sin3(π2)3)

(0sin(0)4sin3(0)3)

=π404130+0+0

=π413