Question #e1ae5
1 Answer
Explanation:
First, let's find the indefinite integral
sin2(x)=1−cos(2x)2 sin(2x)=2sin(x)cos(x)
=16∫sin2(x)(12sin(2x))2dx
=4∫sin2(x)sin2(2x)dx
=4∫1−cos(2x)2sin2(2x)dx
=2∫(sin2(2x)−sin2(2x)cos(2x))dx
=2∫sin2(2x)dx−2∫sin2(2x)cos(2x)dx
Let's evaluate these integrals separately.
=∫dx−∫cos(4x)dx
=x−sin(4x)4+C
For the second integral, we make the substitution
Then
=u33+C
=sin3(2x)3+C
Putting the above together, we get
=2∫sin2(2x)dx−2∫sin2(2x)cos(2x)dx
=x−sin(4x)4−sin3(2x)3+C
We can now evaluate the definite integral.
=(π4−sin(π)4−sin3(π2)3)
−(0−sin(0)4−sin3(0)3)
=π4−04−13−0+0+0
=π4−13