How do you find \sum _ { n = 1} ^ { \infty } \frac { 15^ { n } } { ( n + 1) 6^ { 2n + 1} }?
2 Answers
Explanation:
We will make use of the taylor series
with that:
=1/6sum_(n=1)^oo1/(n+1)(15/36)^n
=1/6sum_(n=2)^oo(1/n)(5/12)^(n-1)
=1/6sum_(n=2)^oo(1/n)(5/12)^n(5/12)^(-1)
=12/5*1/6[-5/12+sum_(n=1)^oo(1/n)(5/12)^n]
=-1/6+2/5sum_(n=1)^oo(1/n)(5/12)^n
=-1/6-2/5[-sum_(n=1)^oo(1/n)(5/12)^n]
=-1/6-2/5ln(1-5/12)
=2/5ln(12/7)-1/6
~~0.0489
Explanation:
with
Now
and finally