How do you find \sum _ { n = 1} ^ { \infty } \frac { 15^ { n } } { ( n + 1) 6^ { 2n + 1} }?

2 Answers
Dec 12, 2016

sum_(n=1)^oo15^n/((n+1)*6^(2n+1)) = 2/5ln(12/7)-1/6~~0.0489

Explanation:

We will make use of the taylor series

-sum_(n=1)^oox^n/n = ln(1-x) for |x|<1

with that:

sum_(n=1)^oo15^n/((n+1)*6^(2n+1)) = sum_(n=1)^oo15^n/((n+1)*6*36^n)

=1/6sum_(n=1)^oo1/(n+1)(15/36)^n

=1/6sum_(n=2)^oo(1/n)(5/12)^(n-1)

=1/6sum_(n=2)^oo(1/n)(5/12)^n(5/12)^(-1)

=12/5*1/6[-5/12+sum_(n=1)^oo(1/n)(5/12)^n]

=-1/6+2/5sum_(n=1)^oo(1/n)(5/12)^n

=-1/6-2/5[-sum_(n=1)^oo(1/n)(5/12)^n]

=-1/6-2/5ln(1-5/12)

=2/5ln(12/7)-1/6

~~0.0489

Dec 12, 2016

0.04893193362640811

Explanation:

sum_(n=1)^oo 15^n/((n+1)6^(2n+1))=6/15sum_(n=1)^oo((15/36)^(n+1))/(n+1)=2/5sum_(n=2)^oo x^n/n

with x = 15/36=5/12 < 1

Now 2/5sum_(n=2)^oo x^n/n=2/5sum_(n=2)^oo int_0^xlambda^(n-1)dlambda = 2/5sum_(n=1)^oo int_0^xlambda^ndlambda and also

2/5sum_(n=1)^oo int_0^xlambda^ndlambda=2/5(int_0^x sum_(n=1)^oo lambda^n)dlambda but abs lambda < 1 so

2/5(int_0^x sum_(n=1)^oo lambda^n)dlambda = 2/5int_0^x(-1/(lambda-1)-1)dlambda

and finally

sum_(n=1)^oo 15^n/((n+1)6^(2n+1))=2/5(-log(1-x)-x) = 2/5(-log(1-5/12)-5/12)=0.04893193362640811