Question #6f533

1 Answer
Dec 15, 2016

intxsqrt(2x+1)dx = (2x+1)^(3/2)(1/5x-1/15)+C

Explanation:

Using the integration by parts formula

intudv = uv-intvdu

Let
u = x => du = dx
dv = (2x+1)^(1/2)dx => v = 1/3(2x+1)^(3/2)

intxsqrt(2x+1)dx = intudv

=uv - intvdu

=1/3x(2x+1)^(3/2)-1/3int(2x+1)^(3/2)dx

=1/3x(2x+1)^(3/2)-1/3[1/5(2x+1)^(5/2)]+C

=1/3x(2x+1)^(3/2)-1/15(2x+1)^(5/2)+C

=1/3(2x+1)^(3/2)[x-1/5(2x+1)]+C

=(2x+1)^(3/2)(1/5x-1/15)+C