Question #5d572

2 Answers
Dec 26, 2016

Using the definitions of csccsc and cotcot, along with the identities

  • sin(2x) = 2sin(x)cos(x)sin(2x)=2sin(x)cos(x)
  • cos(2x) = 2cos^2(x)-1cos(2x)=2cos2(x)1

we have

csc(2x)+cot(2x) = 1/sin(2x)+cos(2x)/sin(2x)csc(2x)+cot(2x)=1sin(2x)+cos(2x)sin(2x)

=(1+cos(2x))/sin(2x)=1+cos(2x)sin(2x)

=(1+(2cos^2(x)-1))/(2sin(x)cos(x))=1+(2cos2(x)1)2sin(x)cos(x)

=(2cos^2(x))/(2sin(x)cos(x))=2cos2(x)2sin(x)cos(x)

=cos(x)/sin(x)=cos(x)sin(x)

=cot(x)=cot(x)

Dec 26, 2016

See proof below

Explanation:

We use

cscx=1/sinxcscx=1sinx

sin2x=2sinxcosxsin2x=2sinxcosx

cos2x=2cos^2x-1cos2x=2cos2x1

cotx=cosx/sinxcotx=cosxsinx

So,

csc2x+cot2x=1/(sin2x)+(cos2x)/(sin2x)csc2x+cot2x=1sin2x+cos2xsin2x

=(1+cos2x)/(sin2x)=1+cos2xsin2x

=(1+cos^2x-1)/(2sinxcosx)=1+cos2x12sinxcosx

=(2cos^2x)/(2sinxcosx)=2cos2x2sinxcosx

=cosx/sinx=cosxsinx

=cotx=cotx

Q.E.D