Question #5d572
2 Answers
Dec 26, 2016
Using the definitions of
sin(2x) = 2sin(x)cos(x)sin(2x)=2sin(x)cos(x) cos(2x) = 2cos^2(x)-1cos(2x)=2cos2(x)−1
we have
=(1+cos(2x))/sin(2x)=1+cos(2x)sin(2x)
=(1+(2cos^2(x)-1))/(2sin(x)cos(x))=1+(2cos2(x)−1)2sin(x)cos(x)
=(2cos^2(x))/(2sin(x)cos(x))=2cos2(x)2sin(x)cos(x)
=cos(x)/sin(x)=cos(x)sin(x)
=cot(x)=cot(x)
Dec 26, 2016
See proof below
Explanation:
We use
So,
Q.E.D