How do you solve 4^x=134x=13?

1 Answer
Dec 30, 2016

x = ln(13)/ln(4) = log_4(13) ~~ 1.850x=ln(13)ln(4)=log4(13)1.850

Explanation:

Using the property of logarithms that log(a^x) = xlog(a)log(ax)=xlog(a), we have

4^x = 134x=13

=> ln(4^x) = ln(13)ln(4x)=ln(13)

=> xln(4) = ln(13)xln(4)=ln(13)

:. x = ln(13)/ln(4) = log_4(13) ~~ 1.850

(The last line uses the fact that log_a(b) = log(b)/log(a))