Prove? cscx(1+cosx)(cscx-cotx)=1cscx(1+cosx)(cscx−cotx)=1
3 Answers
See explanation
Explanation:
We will use the following:
(a+b)(a-b) = a^2-b^2(a+b)(a−b)=a2−b2 csc(x) = 1/sin(x)csc(x)=1sin(x) cot(x) = cos(x)/sin(x)cot(x)=cos(x)sin(x) 1-cos^2(x) = sin^2(x)1−cos2(x)=sin2(x)
With those,
= (csc(x)+cot(x))(csc(x)-cot(x))=(csc(x)+cot(x))(csc(x)−cot(x))
=csc^2(x)-cot^2(x)=csc2(x)−cot2(x)
=1/sin^2(x)-cos^2(x)/sin^2(x)=1sin2(x)−cos2(x)sin2(x)
=(1-cos^2(x))/sin^2(x)=1−cos2(x)sin2(x)
=sin^2(x)/sin^2(x)=sin2(x)sin2(x)
=1=1
proved
See below:
Explanation:
We have:
distributing out:
and now to reorder and simplify:
Now we'll use the identity of