How do you simplify (2-2i)*(-3+3i)(22i)(3+3i)?

1 Answer
Jan 4, 2017

Perform the multiplication, using the F.O.I.L. method, substitute -1 for i^2i2, and then combine like terms.

Explanation:

Multiply the F irst terms:

(2 -2i)*(-3 + 3i) = -6(22i)(3+3i)=6

Multiply the Outside terms:

(2 -2i)*(-3 + 3i) = -6 + 6i(22i)(3+3i)=6+6i

Multiply the I nside terms:

(2 -2i)*(-3 + 3i) = -6 + 6i + 6i(22i)(3+3i)=6+6i+6i

Multiply the Last terms:

(2 -2i)*(-3 + 3i) = -6 + 6i + 6i - 9i^2(22i)(3+3i)=6+6i+6i9i2

Substitute -1 for i^2i2:

(2 -2i)*(-3 + 3i) = -6 + 6i + 6i - 9(-1)(22i)(3+3i)=6+6i+6i9(1)

(2 -2i)*(-3 + 3i) = -6 + 6i + 6i + 9(22i)(3+3i)=6+6i+6i+9

Combine like terms:

(2 -2i)*(-3 + 3i) = 3 + 12i(22i)(3+3i)=3+12i

I hope that this helps.