How do you simplify and divide #(x^5-7x^3+x+1)/(x+3)#?

1 Answer
Jan 20, 2017

#x^4-3x^3+2x^2-6x+13# and remainder of-38

Explanation:

# color(white)(aaaaaaaaaa)##x^4-3x^3+2x^2-6x+13#
#color(white)(aaaaaaaaaa)##---------#
#color(white)(aaaa)x-4##|##x^5+0-7x^3+0+x+1#
#color(white)(aaaaaaaaaa)##x^5+3x^4##color(white)#
#color(white)(aaaaaaaaaaa)##0-3x^4-7x^3#
#color(white)(aaaaaaaaaaaaa)##-3x^4-9x^3#
#color(white)(aaaaaaaaaaaaaaaaaaaaaa)##2x^3+0#
#color(white)(aaaaaaaaaaaaaaaaaaaaaa)##2x^3+6x^2#
#color(white)(aaaaaaaaaaaaaaaaaaaaaaaaa)##-6x^2+x#
#color(white)(aaaaaaaaaaaaaaaaaaaaaaaaa)##-6x^2-12x#
#color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)##13x+1#
#color(white)(aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa)##13x+39#