How do you find the range, variance, and standard deviation for 1, 2, 3, 4, 5, 6, 7?

1 Answer
Jan 21, 2017

The range is 6 the variance is 14/3, and the standard deviation is sqrt(14/3).

Explanation:

For a sample set S={1,2,3,4,5,6,7}

The range is max(S)-min(S)=7-1=6

The average barx=1/nsum_(k=1)^nk where n=7

Then barx=1/7sum_(k=1)^7k=(1+2+3+4+5+6+7)/7=28/7=4

This is important because the variance

s^2=1/(n-1)sum_(k=1)^n(x_k-barx)_k^2, and since n=7 and barx=4

s^2=1/6sum_(k=1)^7(x-4)_k^2=1/6((-3)^2+(-2)^2+(-1)^2+0^2+1^2+2^2+3^2)=((-3)^2+(-2)^2+(-1)^2+0^2+1^2+2^2+3^2)/6=(9+4+1+0+1+4+9)/6=(2+8+18)/6=28/6=14/3

And since the standard deviation is the square root of the variance s=sqrt(s^2)

s=sqrt(14/3)