How do you find the range, variance, and standard deviation for 1, 2, 3, 4, 5, 6, 7?

1 Answer
Jan 21, 2017

The range is #6# the variance is #14/3#, and the standard deviation is #sqrt(14/3)#.

Explanation:

For a sample set #S={1,2,3,4,5,6,7}#

The range is #max(S)-min(S)=7-1=6#

The average #barx=1/nsum_(k=1)^nk# where #n=7#

Then #barx=1/7sum_(k=1)^7k=(1+2+3+4+5+6+7)/7=28/7=4#

This is important because the variance

#s^2=1/(n-1)sum_(k=1)^n(x_k-barx)_k^2#, and since #n=7# and #barx=4#

#s^2=1/6sum_(k=1)^7(x-4)_k^2=1/6((-3)^2+(-2)^2+(-1)^2+0^2+1^2+2^2+3^2)=((-3)^2+(-2)^2+(-1)^2+0^2+1^2+2^2+3^2)/6=(9+4+1+0+1+4+9)/6=(2+8+18)/6=28/6=14/3#

And since the standard deviation is the square root of the variance #s=sqrt(s^2)#

#s=sqrt(14/3)#