How do you use implicit differentiation to find #(dy)/(dx)# given #5x^3+xy^2=5x^3y^3#?

1 Answer
Jan 22, 2017
  1. Differentiate each term
    #d(5x^3)+d(xy^2)=d(5x^3y^3)#

  2. Pull constants out of each differential
    #5d(x^3)+d(xy^2)=5d(x^3y^3)#

  3. Differentiate
    #5(color(red)(3x^2dx))+[color(blue)(x(2y)dy+y^2dx)]=5[color(purple)(x^3(3y^2)dy+y^3(3x^2)dx)]#

  4. Simplify
    #(15x^2)dx+(2xy)dy+(y^2)dx=(15x^3y^2)dy+(15x^2y^3)dx#

  5. Separate #dy# and #dx# terms
    #(2xy)dy-(15x^3y^2)dy=(15x^2y^3)dx-(15x^2)dx-(y^2)dx#

  6. Simplify terms
    #(-15x^3y^2+2xy)dy=(15x^2y^3-15x^2-y^2)dx#

  7. Solve for #dy/dx#
    #dy/dx=(15x^2y^3-15x^2-y^2)/(-15x^3y^2+2xy)#