How do you use implicit differentiation to find #(dy)/(dx)# given #5x^3+xy^2=5x^3y^3#?
1 Answer
Jan 22, 2017
-
Differentiate each term
#d(5x^3)+d(xy^2)=d(5x^3y^3)# -
Pull constants out of each differential
#5d(x^3)+d(xy^2)=5d(x^3y^3)# -
Differentiate
#5(color(red)(3x^2dx))+[color(blue)(x(2y)dy+y^2dx)]=5[color(purple)(x^3(3y^2)dy+y^3(3x^2)dx)]# -
Simplify
#(15x^2)dx+(2xy)dy+(y^2)dx=(15x^3y^2)dy+(15x^2y^3)dx# -
Separate
#dy# and#dx# terms
#(2xy)dy-(15x^3y^2)dy=(15x^2y^3)dx-(15x^2)dx-(y^2)dx# -
Simplify terms
#(-15x^3y^2+2xy)dy=(15x^2y^3-15x^2-y^2)dx# -
Solve for
#dy/dx#
#dy/dx=(15x^2y^3-15x^2-y^2)/(-15x^3y^2+2xy)#