What is the derivative of f(x)=e^(x^2lnx)f(x)=ex2lnx?

1 Answer
Jan 24, 2017

f'(x)=xe^(x^2ln(x))(2ln(x)+1)

Explanation:

We will use the following:

  • The chain rule.

  • The product rule.

  • d/dx e^x = e^x

  • d/dx x^n = nx^(n-1)

  • d/dx ln(x) = 1/x

With those:

f'(x) = d/dxe^(x^2ln(x))

= e^(x^2ln(x))(d/dxx^2ln(x))

=e^(x^2ln(x))(x^2(d/dxln(x))+ln(x)(d/dxx^2))

=e^(x^2ln(x))(x^2(1/x)+ln(x)(2x))

=e^(x^2ln(x))(x+2xln(x))

=xe^(x^2ln(x))(2ln(x)+1)