Question #2c4f7

1 Answer
Jan 27, 2017

ans. the derivative is e2y(x1)2, where y=lnx+1x1.

Explanation:

see, at first let y=lnx+1x1
or ey=x+1x1
or e2y =x+1x1 (sqaring)
now differenting the above w.r.t x we get ,
dydx2e2Y=(x1)(x+1)(x1)2 by (duvdx)method
or dydxe2y =1(x1)2
or we get dydx=e2y(x1)2 where y=lnx+1x1.