How do you differentiate sinx+sinxcosxsinx+sinxcosx?

2 Answers
Jan 31, 2017

cosx + cos^2x - sin^2xcosx+cos2xsin2x

Explanation:

The derivative of sinxsinx is cosxcosx.

For sinxcosxsinxcosx, we need to use the product rule, so let a,ba,b be functions of xx. Then (ab)' = a'b + ab'.

(sinxcosx)' = (sinx)'cosx + sinx(cosx)' = cosx * cosx + sinx * (-sinx)

=cos^2x - sin^2x.

The final derivative is cosx + cos^2x - sin^2x.

Jan 31, 2017

cosx+cos2x

Explanation:

We require to know the following color(blue)"standard derivatives"

color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(sinx)=cosx , d/dx(cosx)=-sinx)color(white)(2/2)|)))

Also the color(blue)"trigonometric identity"

color(red)(bar(ul(|color(white)(2/2)color(black)(cos2x=cos^2x-sin^2x)color(white)(2/2)|)))

sinxcosx" has to be differentiated using the"color(blue)" product rule"

"Given "f(x)=g(x).h(x)" then"

color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=g(x)h'(x)+h(x)g'(x))color(white)(2/2)|)))

"here "g(x)=sinxrArrg'(x)=cosx

"and "h(x)=cosxrArrh'(x)=-sinx

rArrd/dx(sinxcosx)=sinx(-sinx)+cosx(cosx)

=cos^2x-sin^2x=cos2x

"Thus "d/dx(sinx+sinxcosx)=cosx+cos2x