How do you differentiate #sinx+sinxcosx#?
2 Answers
Explanation:
The derivative of
For
The final derivative is
Explanation:
We require to know the following
#color(blue)"standard derivatives"#
#color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(sinx)=cosx , d/dx(cosx)=-sinx)color(white)(2/2)|)))# Also the
#color(blue)"trigonometric identity"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(cos2x=cos^2x-sin^2x)color(white)(2/2)|)))#
#sinxcosx" has to be differentiated using the"color(blue)" product rule"#
#"Given "f(x)=g(x).h(x)" then"#
#color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=g(x)h'(x)+h(x)g'(x))color(white)(2/2)|)))#
#"here "g(x)=sinxrArrg'(x)=cosx#
#"and "h(x)=cosxrArrh'(x)=-sinx#
#rArrd/dx(sinxcosx)=sinx(-sinx)+cosx(cosx)#
#=cos^2x-sin^2x=cos2x#
#"Thus "d/dx(sinx+sinxcosx)=cosx+cos2x#