How do you differentiate sinx+sinxcosxsinx+sinxcosx?
2 Answers
Explanation:
The derivative of
For
The final derivative is
Explanation:
We require to know the following
color(blue)"standard derivatives"
color(orange)"Reminder " color(red)(bar(ul(|color(white)(2/2)color(black)(d/dx(sinx)=cosx , d/dx(cosx)=-sinx)color(white)(2/2)|))) Also the
color(blue)"trigonometric identity"
color(red)(bar(ul(|color(white)(2/2)color(black)(cos2x=cos^2x-sin^2x)color(white)(2/2)|)))
sinxcosx" has to be differentiated using the"color(blue)" product rule"
"Given "f(x)=g(x).h(x)" then"
color(red)(bar(ul(|color(white)(2/2)color(black)(f'(x)=g(x)h'(x)+h(x)g'(x))color(white)(2/2)|)))
"here "g(x)=sinxrArrg'(x)=cosx
"and "h(x)=cosxrArrh'(x)=-sinx
rArrd/dx(sinxcosx)=sinx(-sinx)+cosx(cosx)
=cos^2x-sin^2x=cos2x
"Thus "d/dx(sinx+sinxcosx)=cosx+cos2x