What is the cross product of [-1, -1, 2][1,1,2] and [-1, 2, 2] [1,2,2]?

1 Answer
Feb 1, 2017

[-1,-1,2] xx [-1,2,2] = [-6, 0, -3][1,1,2]×[1,2,2]=[6,0,3]

Explanation:

The cross product between two vectors vecAA and vecBB is defined to be

vecA xx vecB = ||vecA|| * ||vecB|| * sin(theta) * hatnA×B=ABsin(θ)ˆn,

where hatnˆn is a unit vector given by the right hand rule, and thetaθ is the angle between vecAA and vecBB and must satisfy 0<=theta<=pi0θπ.

For of the unit vectors hatiˆi, hatjˆj and hatkˆk in the direction of xx, yy and zz respectively, using the above definition of cross product gives the following set of results.

color(white)( (color(black){hati xx hati = vec0}, color(black){qquad hati xx hatj = hatk}, color(black){qquad hati xx hatk = -hatj}), (color(black){hatj xx hati = -hatk}, color(black){qquad hatj xx hatj = vec0}, color(black){qquad hatj xx hatk = hati}), (color(black){hatk xx hati = hatj}, color(black){qquad hatk xx hatj = -hati}, color(black){qquad hatk xx hatk = vec0}))

Also, note that cross product is distributive.

vecA xx (vecB + vecC) = vecA xx vecB + vecA xx vecC.

So for this question.

[-1,-1,2] xx [-1,2,2]

= (-hati - hatj + 2hatk) xx (-hati + 2hatj + 2hatk)

= color(white)( (color(black){-hati xx (-hati) - hati xx 2hatj - hati xx 2hatk}), (color(black){-hatj xx (-hati) - hatj xx 2hatj - hatj xx 2hatk}), (color(black){+2hatk xx (-hati) + 2hatk xx 2hatj + 2hatk xx 2hatk}) )

= color(white)( (color(black){vec0 - 2hatk quad qquad + 2hatj}), (color(black){-hatk - 2(vec0) - 2hati}), (color(black){- 2hatj - 4hati quad - 4(vec0)}) )

= -6hati - 3hatk

= [-6,0,-3]