Question #2cc45

2 Answers
Feb 3, 2017

lim_(x->oo)ln(ln(x))/sqrt(x) = 0

Explanation:

lim_(x->oo)ln(ln(x))/sqrt(x) produces an oo/oo indeterminate form on direct substitution, and so we may apply L'Hopital's rule.

lim_(x->oo)ln(ln(x))/sqrt(x) = lim_(x->oo)(d/dxln(ln(x)))/(d/dxsqrt(x))

=lim_(x->oo)(1/(xln(x)))/(1/(2sqrt(x))

=lim_(x->oo)2/(sqrt(x)ln(x))

=2/oo

=0

Feb 3, 2017

0

Explanation:

e^x is a monotonically increasing function so

lim_(x->oo)log(log(x))/sqrt(x)=lim_(x->oo)e^(log(logx))/e^sqrt(x)=lim_(x->oo)log(x)/e^sqrt(x)

Here log(x) < x and e^sqrt(x) grows much more quickly than any polynomial function so

lim_(x->oo)log(log(x))/sqrt(x)=lim_(x->oo)log(x)/e^sqrt(x)=0