How do you find the exact solutions of the equation sin2x-sinx=0sin2xsinx=0 in the interval [0,2pi)[0,2π)?

1 Answer
Feb 20, 2017

0, pi/3, pi, (5pi)/30,π3,π,5π3,

Explanation:

Use trig identity: sin 2 x = 2sin x.cos x.
Replace in the equation sin 2x = 2sin x.cos x
2sin x.cos x - sin x = 0
sin x(2cos x - 1) = 0
a. sin x = 0 --> x = 0, x = pi, x = 2pix=0,x=π,x=2π
b. 2cos x - 1 = 0 --> cos x = 1/2cosx=12
Unit circle gives:
x = 1/2x=12 --> cos x = +- pi/3cosx=±π3
Note. - pi/3π3 and (5pi)/35π3 are co-terminal.
Answers for (0, 2pi)(0,2π)
0, pi/3, pi, (5pi)/3, 2pi0,π3,π,5π3,2π