How do you find all six trigonometric function of thetaθ if the point (-5,12) is on the terminal side of thetaθ?

1 Answer
Feb 20, 2017

tan t = 12/-5 tant=125
cos^2 t = 1/(1 + tan^2 t) = 1/(1 + 144/25) = 25/169cos2t=11+tan2t=11+14425=25169
cos t = +- 5/13cost=±513
Because tan t < 0, then, cos t is negative
cos t = - 5/13cost=513
sin t = tan t.cos t = (- 12/5)(- 5/13) = 12/13sint=tant.cost=(125)(513)=1213
sec t = 1/(cos) = - 13/5sect=1cos=135
csc t = 1/sin = 13/12csct=1sin=1312