Question #d49bf

2 Answers
Feb 28, 2017

= (cos (a + b)(cos (a - b)=(cos(a+b)(cos(ab)

Explanation:

Use these trig identities:
cos (a + b) = cos a.cos b - sin a.sin b
cos (a - b) = cos a.cos b + sin a.sin b)
In this case:
(cos a.cos b)^2 - (sin a.sin b)^2 = (cosa.cosb)2(sina.sinb)2=
= (cos a.cos b - sin a.sin b)(cos a.cos b + sin a.sin b) = =(cosa.cosbsina.sinb)(cosa.cosb+sina.sinb)=
= cos (a + b)(cos (a - b)=cos(a+b)(cos(ab)

Feb 28, 2017

(cosacosb)^2-(sinasinb)^2(cosacosb)2(sinasinb)2

=cos^2acos^2b-sin^2asin^2b=cos2acos2bsin2asin2b

=cos^2a(1-sin^2b)-(1-cos^2a)sin^2b=cos2a(1sin2b)(1cos2a)sin2b

=cos^2a-cos^2asin^2b-sin^2b+cos^2asin^2b=cos2acos2asin2bsin2b+cos2asin2b

=cos^2a-sin^2b=cos2asin2b

=cos^2a-(1-cos^2b)=cos2a(1cos2b)

=cos^2a+cos^2b-1=cos2a+cos2b1