How do you find the derivative of f(x)=2x^3-x^2+3xf(x)=2x3x2+3x?

1 Answer
Mar 2, 2017

6x^2-2x+36x22x+3

Explanation:

Derivative of any simple power is

d/dx ax^n = n*ax^(n-1)ddxaxn=naxn1

and for polynomials,

d/dx (a+b+c)=d/dxa + d/dxb + d/dxcddx(a+b+c)=ddxa+ddxb+ddxc.

For the above question,

f(x)=2x^3-x^2+3xf(x)=2x3x2+3x

d/dx(2x^3) = 6x^2ddx(2x3)=6x2

d/dx(-x^2) = -2x^1=-2xddx(x2)=2x1=2x

d/dx(3x)=3x^0=3ddx(3x)=3x0=3

so

f'(x)=6x^2-2x+3