d/dx[a+b+c] = d/dx[a] + d/dx[b] + d/dx[c]ddx[a+b+c]=ddx[a]+ddx[b]+ddx[c]
so
dy/dx = d/dx[cos^3w] + d/dx[cos(w^3)]dydx=ddx[cos3w]+ddx[cos(w3)]
Now we've split it up, we can tackle each term separately.
The product rule states that
d/dx ab = bd/dx[a] + ad/dx[b]ddxab=bddx[a]+addx[b]
so
d/dxcos^3w = coswd/dx[cos^2w] + cos^2wd/dxcoswddxcos3w=coswddx[cos2w]+cos2wddxcosw
d/dxcos^2w = coswd/dxcosx + coswd/dxcoswddxcos2w=coswddxcosx+coswddxcosw
= -2sinwcosw=−2sinwcosw
therefore,
d/dxcos^3w = cosw*-2sinwcosw + cos^2w*-sinwddxcos3w=cosw⋅−2sinwcosw+cos2w⋅−sinw
= -3sinwcos^2w=−3sinwcos2w
Now we can begin to look at the second term, for which we need the chain rule:
d/dx f(g(x)) = g'(x)f'(g(x))
so
d/dx cos(w^3) = 3w^2 * -sin(w^3) = -3w^2sin(w^3)
Now we can put the whole thing back together,
dy/dx = -3sinwcos^2w-3w^2sin(w^3)