How do you simplify #-\frac { 3} { 5} ( 20r - 5) - ( - 6r )#?

2 Answers
Mar 15, 2017

#-6r+3#

Explanation:

Distributing the brackets.

#color(red)(-3/5)(20r-5)color(red)(-1)(-6r)#

#=(-3/cancel(5)^1xxcancel(20)^4 r)+(-3/cancel(5)^1xx-cancel(5)^1)+(-1xx-6r)#

#=-12r+3+6r#

#=-6r+3#

Mar 15, 2017

#3-6r#

Explanation:

First multiply out the brackets:

#-3/5(20r-5)-(-6r)#

#=-(3)/(cancel5^color(red)(1) )*cancel20^color(red)4r+3/(cancel(-5)^color(red)(1))*cancel(-5)^color(red)1-(-6r)#

#=-12r+3-(-6r)#

Remembering that a "minus and a minus makes a plus", we have:

#=-12r+3+6r#

Simplifying gives:

#=-6r+3#

The above is a perfectly acceptable answer, but where possible, I choose not to lead with a negative, and so simple rearranging gives:

#=3-6r#