How do you simplify #-\frac { 3} { 5} ( 20r - 5) - ( - 6r )#?
2 Answers
Mar 15, 2017
Explanation:
Distributing the brackets.
#color(red)(-3/5)(20r-5)color(red)(-1)(-6r)#
#=(-3/cancel(5)^1xxcancel(20)^4 r)+(-3/cancel(5)^1xx-cancel(5)^1)+(-1xx-6r)#
#=-12r+3+6r#
#=-6r+3#
Mar 15, 2017
Explanation:
First multiply out the brackets:
#-3/5(20r-5)-(-6r)#
#=-(3)/(cancel5^color(red)(1) )*cancel20^color(red)4r+3/(cancel(-5)^color(red)(1))*cancel(-5)^color(red)1-(-6r)#
#=-12r+3-(-6r)#
Remembering that a "minus and a minus makes a plus", we have:
#=-12r+3+6r#
Simplifying gives:
#=-6r+3#
The above is a perfectly acceptable answer, but where possible, I choose not to lead with a negative, and so simple rearranging gives:
#=3-6r#