How do you find the derivative of sin^2(sqrtx)?

1 Answer
Mar 17, 2017

(dy)/(dx)=(sin(sqrtx)cos(sqrtx))/(sqrtx)

Explanation:

Let y=u^2, where u=sin(sqrtx)

Since we have a function within a function, we must use the chain rule to derive y, where (dy)/(dx)=(dy)/(du)*(du)/(dx)

d/(du)u^2=2u=2sin(sqrtx)

To derive u in terms of x, we need to apply chain rule once more.

Let u=sin(v), v=sqrtx

(du)/(dv)=cos(v), (dv)/(dx)=1/2x^(-1/2)=1/(2sqrtx)

Hence, (du)/(dx)=(du)/(dv)*(dv)/(dx)=cos(sqrtx)*1/(2sqrtx)

=(cos(sqrtx))/(2sqrtx)

Now that we know (du)/(dx), we can find (dy)/(dx)

(dy)/(dx)=(dy)/(du)*(du)/(dx)=(cancel(2)sin(sqrtx)cos(sqrtx))/(cancel(2)sqrtx)

=(sin(sqrtx)cos(sqrtx))/(sqrtx)