Let y=u^2, where u=sin(sqrtx)
Since we have a function within a function, we must use the chain rule to derive y, where (dy)/(dx)=(dy)/(du)*(du)/(dx)
d/(du)u^2=2u=2sin(sqrtx)
To derive u in terms of x, we need to apply chain rule once more.
Let u=sin(v), v=sqrtx
(du)/(dv)=cos(v), (dv)/(dx)=1/2x^(-1/2)=1/(2sqrtx)
Hence, (du)/(dx)=(du)/(dv)*(dv)/(dx)=cos(sqrtx)*1/(2sqrtx)
=(cos(sqrtx))/(2sqrtx)
Now that we know (du)/(dx), we can find (dy)/(dx)
(dy)/(dx)=(dy)/(du)*(du)/(dx)=(cancel(2)sin(sqrtx)cos(sqrtx))/(cancel(2)sqrtx)
=(sin(sqrtx)cos(sqrtx))/(sqrtx)