How do you simplify (8r^-5s^-4)/(6qr^6s^-7)?

1 Answer
Mar 18, 2017

(4s^3)/(3qr^11)

Explanation:

Using the Index law a^(-n)=1/a^n, and conversely 1/a^(-n)=a^n, swap around the values so that they all have positive indices:

(8s^7)/(6qr^5r^6s^4)

Using the index law a^m+a^n=a^(m+n), you can simplify r:

(8s^7)/(6qr^(5+6)s^4)=(8s^7)/(6qr^(11)s^4)

Using the index law a^m/a^n=a^(m-n) gives

(8s^(7-4))/(6qr^(11))=(8s^3)/(6qr^(11))

Reduce:

(cancel8^color(red)(4)s^3)/(cancel6^color(red)(3)qr^(11))=(4s^3)/(3qr^(11))