How do you use the chain rule to differentiate 1ln(4x)?

1 Answer
Mar 28, 2017

Let u=4x, v=ln(u)=ln(4x).

Differentiating the above equation yields

dudx=4
dvdu=1u

Then,

1ln(4x)=1v

ddx(1ln(4x))=ddx(1v)

=ddv(1v)dvdududx

=(1v2)(1u)(4)

=(1(ln(4x))2)(14x)(4)

=1x(ln(4x))2