How do you solve 2/(x-1) - 2/3 =4/(x+1)2x123=4x+1?

1 Answer
Mar 31, 2017

x = -5 or 2x=5or2

Explanation:

2/(x-1) - 2/3 = 4/(x+1)2x123=4x+1

=> 2/(x-1)-4/(x+1)=2/32x14x+1=23

implies (2(x+1)-4(x-1))/((x-1)*(x+1)) = 2/32(x+1)4(x1)(x1)(x+1)=23

implies (2(x+1)-4(x-1))/(x^2-1) = 2/32(x+1)4(x1)x21=23

implies (6-2x)3 = 2(x^2-1)(62x)3=2(x21)
implies (3-x)3=x^2-1(3x)3=x21
impliesx^2+3x-10=0x2+3x10=0

[ solution of a general quadratic equation of the form ax^2+bx+c=0ax2+bx+c=0 is given by
x=(-b+-sqrt(b^2-4ac))/(2a)x=b±b24ac2a]

implies x= (-3+-sqrt(9+40))/2x=3±9+402
impliesx = (-3+-7)/2x=3±72
impliesx = -5, 2x=5,2