Question #ca9fe

2 Answers
Apr 4, 2017

LHS=cscA*sin2A-secALHS=cscAsin2AsecA

=cscA*(2sinA*cosA)-secA=cscA(2sinAcosA)secA

=1/sinA*(2sinAcosA)-1/cosA=1sinA(2sinAcosA)1cosA

=2cosA-1/cosA=2cosA1cosA

=(2cos^2A-1)/cosA=2cos2A1cosA

=(cos2A)/cosA=cos2AcosA

=cos2A*secA=RHS=cos2AsecA=RHS

Apr 4, 2017

Use trigonometric identities as done below

Explanation:

We will make use of the identities below, found here and here . As for why we choose these identities, I can only refer to practice and intuition.
1. csc(x) = 1/sin(x)csc(x)=1sin(x)
2. sec(x) = 1/cos(x)sec(x)=1cos(x)
3. sin(2x) = 2sin(x)cos(x)sin(2x)=2sin(x)cos(x)
4. cos(2x) = cos^2(x) - sin^2(x)cos(2x)=cos2(x)sin2(x)
5. sin^2(x) + cos^2(x) = 1sin2(x)+cos2(x)=1

Rewrite csc(A)sin(2A)-sec(A)csc(A)sin(2A)sec(A) using identies 1. and 2.
csc(A)sin(2A)-sec(A) = csc(A)sin(2A)sec(A)=
sin(2A)/sin(A)-1/cos(A)sin(2A)sin(A)1cos(A)
use identity 3.
(2sin(A)cos(A))/sin(A)-1/cos(A)2sin(A)cos(A)sin(A)1cos(A)
2cos(A) - 1/cos(A)2cos(A)1cos(A)
Put on common denominator by multiplying the first term by cos(A)cos(A)
(2cos^2(A) - 1)/cos(A)2cos2(A)1cos(A)
Substitute the 11, using identity 5.
(2cos^2(A) - (cos^2(A) + sin^2(A)))/cos(A)2cos2(A)(cos2(A)+sin2(A))cos(A)
Simplify (and mind the sign when removing the parenthesis)
(cos^2(A) - sin^2(A))/cos(A)cos2(A)sin2(A)cos(A)
Use identity 4 and write the denominator as a factor, for clarity
cos(2A)1/cos(A)cos(2A)1cos(A)
Use identity 2.

cos(2A)sec(A)cos(2A)sec(A)

and we have arrived at what we wanted to show.