Question #95289

2 Answers
Apr 5, 2017

Use trig identities:
cos a + cos b = 2cos ((a + b)/2)cos ((a - b)/2)(1)
cos^3 a = cos x(4cos^2 x - 3) (2)
sin 2x = 2sin x.cos x (3)
sin^2 x + cos^2 x = 1 (4)
In this case, from identity (1), we get:
f(x) = cos (4x) + cos (2x) = 2cos (3x).cos x
Substitute cos 3x by identity (2)
f(x) = (2cos^2 x)(4cos^2 x - 3)
Replace cos^2 x by (1 - sin^2 x)
f(x) = 2cos^2 x( 4 - 4sin^2 x - 3) = 2cos^2 x(-4sin^2 x + 1)
From identities (3) and (4), we get:
f(x) = - 8sin^2 x.cos^2 x + 2cos^2 x = - 2sin^2 (2x) + 2 - 2sin^2 x. Proved.

Apr 5, 2017

LHS=cos4x+cos2x

=1-2sin^2\x+1-2sin^2x

=2-2sin^2\x-2sin^2x=RHS

[ using formula cos2theta=1-2sin^2theta]