Question #918e5

1 Answer
Apr 9, 2017

x =-1 /2+-sqrt (1/4 - ln 2) x=12±14ln2
or
x = -0.500+-0.666i x=0.500±0.666i

Explanation:

ln 2 -x - ln 4 - x^2 =0ln2xln4x2=0

ln 2 - ln 4 = x^2 + xln2ln4=x2+x

ln 2 - ln 2^2 = x^2 + xln2ln22=x2+x

ln 2 - 2 ln 2 = x^2 + xln22ln2=x2+x

- ln 2 = x^2 + xln2=x2+x

- ln 2 = (x + 1/2)^2 - (1/2)^2ln2=(x+12)2(12)2

1/4 - ln 2 = (x + 1/2)^2 14ln2=(x+12)2

+-sqrt (1/4 - ln 2) = x + 1/2 ±14ln2=x+12

-1 /2+-sqrt (1/4 - ln 2) = x 12±14ln2=x

-0.500+-sqrt (0.250 - 0.693) = x 0.500±0.2500.693=x

-0.500+-sqrt ( - 0.443) = x 0.500±0.443=x

-0.500+-sqrt ( 0.443 * (-1)) = x 0.500±0.443(1)=x

-0.500+-sqrt ( 0.443 * (i^2)) = x 0.500±0.443(i2)=x , where i^2 = -1i2=1

-0.500+-sqrt ( 0.443 )i = x0.500±0.443i=x

-0.500+-0.666i = x 0.500±0.666i=x