How do you use the chain rule to differentiate #y=root5(-x^3-4)#?

1 Answer
Apr 10, 2017

#dy/dx=(-3x^2)/(5(-x^3-4)^(-4/5)#

Explanation:

Rewrite the function as,

#y=(-x^3-4)^(1/5)#

The chain rule has a general forumla of,

#dy/dx=dy/(du)*(du)/(dx)#

Applying that rule,

#dy/dx=[(-x^3-4)^(-4/5)/(1/5)]*(-3x^2)#

Simplify,

#dy/dx=[(-x^3-4)^(-4/5)*(-3x^2)]/5#

Rewrite (eliminate the negative exponents),

#dy/dx=(-3x^2)/(5(-x^3-4)^(-4/5)#