How do you simplify (x + 3)(x^2 - 4x + 9)(x+3)(x2−4x+9)?
1 Answer
Explanation:
To simplify this expression, or any expression, a good start would be putting the binomial before the polynomial. This will make it a lot easier to multiply. In this case, it is already this way.
Now we can begin to multiply.
Take the
Then take the
(x + 3)(x^2 - 4x + 9) (x+3)(x2−4x+9)
(color(blue)(x) + 3)(color(green)(x^2) - 4x + 9) (x+3)(x2−4x+9) color(orange)(->) x * x^2 color(orange)(->) color(red)(x^3) →x⋅x2→x3
(color(blue)(x) + 3)(x^2 (x+3)(x2 color(green)( - 4x) + 9) −4x+9) color(orange)(->) x * -4x color(orange)(->) color(red)(-4x^2) →x⋅−4x→−4x2
(color(blue)(x) + 3)(x^2 - 4x (x+3)(x2−4x color(green)( + 9)) +9) color(orange)(->) x * 9 color(orange)(->) color(red)(9x) →x⋅9→9x
(x (x color(red)( + 3))(color(green)(x^2) - 4x + 9) +3)(x2−4x+9) color(orange)(->) 3 * x^2 color(orange)(->) color(red)(3x^2) →3⋅x2→3x2
(x (x color(red)( + 3))(x^2 +3)(x2 color(green)( - 4x) + 9) −4x+9) color(orange)(->) 3 * -4x color(orange)(->) color(red)(-12x) →3⋅−4x→−12x
(x (x color(red)( + 3))(x^2 - 4x +3)(x2−4x color(green)( + 9)) +9) color(orange)(->) 3 * 9 color(orange)(->) color(red)(27) →3⋅9→27
Now all we have to do is add the terms that we got and simplify.
x^3 + (-4x^2) + 9x + 3x^2 + (-12x) + 27 x3+(−4x2)+9x+3x2+(−12x)+27
x^3 - 4x^2 + 9x + 3x^2 - 12x + 27 x3−4x2+9x+3x2−12x+27
x^3 - x^2 - 3x + 27 x3−x2−3x+27
As you can see, when we simplify our initial expression, we get our answer which is