Question #03e6a

1 Answer
Apr 12, 2017

=12(tan1x+x1+x2)

Explanation:

tan1x011+tan2tdt

By Trigonometric Identities,

=tan1x01sec2tdt=tan1x0cos2tdt=tan1x012(1+cos2t)dt

By integrating and sin2t=2sintcost

=12[1+sin2t2]tan1x0=12[t+sintcost]tan1x0

=12(tan1x+sin(tan1x)cos(tan1x))

=12(tan1x+x1+x211+x2)

=12(tan1x+x1+x2)

I hope that this was clear.