Question #03e6a Calculus Introduction to Integration Integrals of Trigonometric Functions 1 Answer Wataru · mason m Apr 12, 2017 =12(tan−1x+x1+x2) Explanation: ∫tan−1x011+tan2tdt By Trigonometric Identities, =∫tan−1x01sec2tdt=∫tan−1x0cos2tdt=∫tan−1x012(1+cos2t)dt By integrating and sin2t=2sintcost =12[1+sin2t2]tan−1x0=12[t+sintcost]tan−1x0 =12(tan−1x+sin(tan−1x)⋅cos(tan−1x)) =12(tan−1x+x√1+x2⋅1√1+x2) =12(tan−1x+x1+x2) I hope that this was clear. Answer link Related questions How do I evaluate the indefinite integral ∫sin3(x)⋅cos2(x)dx ? How do I evaluate the indefinite integral ∫sin6(x)⋅cos3(x)dx ? How do I evaluate the indefinite integral ∫cos5(x)dx ? How do I evaluate the indefinite integral ∫sin2(2t)dt ? How do I evaluate the indefinite integral ∫(1+cos(x))2dx ? How do I evaluate the indefinite integral ∫sec2(x)⋅tan(x)dx ? How do I evaluate the indefinite integral ∫cot5(x)⋅sin4(x)dx ? How do I evaluate the indefinite integral ∫tan2(x)dx ? How do I evaluate the indefinite integral ∫(tan2(x)+tan4(x))2dx ? How do I evaluate the indefinite integral ∫x⋅sin(x)⋅tan(x)dx ? See all questions in Integrals of Trigonometric Functions Impact of this question 1524 views around the world You can reuse this answer Creative Commons License